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Relationship Between mRNA Stability and Length:
An Old Question with a New Twist
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The half-life of individual mRNA plays a central role in controlling the level of
gene expression. However, the determinants of mRNA stability have not yet been
well defined. Most previous studies suggest that mRNA length does not affect its
stability. Here, we show significant negative correlations between mRNA length
and stability in human and Escherichia coli, but not in Saccharomyces cerevisiae
or Bacillus subtilis. This finding suggests the possibility that endonucleolytic
attacks by RNA endonuclease and/or mechanical damage may strongly influence
mRNA stability in both prokaryotes and eukaryotes.
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INTRODUCTION

Since the steady-state level of mRNA is determined by both synthesis and degra-
dation, mRNA decay is as important as transcription in regulating gene expression
(Khodursky and Bernstein, 2003; Meyer et al., 2004; Wilusz and Wilusz, 2004;
Mata et al., 2005). Experiments have shown that the half-life of mRNA transcripts
extends over a wide range between and within organisms (Meyer et al., 2004). In
Escherichia coli, mRNA half-life ranges from 1 min to over 10 min (Bernstein
et al., 2002; Selinger et al., 2003). In yeast Saccharomyces cerevisiae, mRNA half-
life also varies widely, ranging from approximately 3 min to more than 90 min
(Wang et al., 2002). In humans, unstable mRNA has a half-life of just several
minutes, whereas stable mRNA may exceed 10 h (Raghavan et al., 2002; Yang
et al., 2003; Meyer et al., 2004).
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In eukaryotes, the majority of mRNAs are shown to be degraded from two
ends by deadenylation, decapping, and exonuclease hydrolyzing reactions (Meyer
et al., 2004; Parker and Song, 2004; Yamashita et al., 2005). By contrast, recent
advances in E. coli show that the degradation of bacterial mRNA starts from
endonucleolytic cleavage by RNase E (Jain, 2002). Long bacterial mRNAs are
expected to have more putative sites of cleavage, thus may be degraded more
quickly than short mRNAs. This recalls an old question: What is the relationship
between mRNA length and mRNA stability?

Pioneering analyses of a limited number of genes show that long-lived mRNA
tends to be short in various eukaryotes including humans, mice, insects, and the
yeast S. cerevisiae (Santiago et al., 1986, and references therein). The reverse
relationship between mRNA length and half-life was not found in later studies in
either eukaryotes (Shapiro et al., 1988; Herrick et al., 1990; Wang et al., 2002) or
bacteria (Bernstein et al., 2002). Advances in genome sequencing and microarray
analysis of gene expression make it possible to re-examine that relationship on
a genomewide scale. In this study, we collected genomewide data on mRNA
length and stability (half-life or decay rate) in two eukaryotic species and two
bacterial species. We found significant negative correlation between mRNA length
and stability in human and E. coli, whereas no simple correlation was found in
S. cerevisiae or Bacillus subtilis.

MATERIALS AND METHODS

The genome annotation files of human (build 35 version 1), yeast
S. cerevisiae (build 1 version 1), E. coli (strain K12), and B. subtilis (sub-
species subtilis, strain 168) were downloaded from the NCBI genome database
(ftp://ftp.ncbi.nih.gov/genomes/). Programs written in Perl were used for genome
features extraction and manipulation. Genes with alternative splicing sites or with
obvious annotation errors were removed from our analysis. As the genome anno-
tation files of yeast, E. coli, and B. subtilis contain only information on coding
sequence (CDS), we used CDS lengths to represent the mRNA lengths in these
organisms.

The data on mRNA stability were collected from online supplemental ma-
terials of previous publications, including the decay rates of human mRNAs in
HepG2 cells and Bud8 cells (Yang et al., 2003), mRNA half-lives in human T
lymphocytes under three growth conditions (Raghavan et al., 2002), mRNA half-
lives of yeast (Holstege et al., 1998; Wang et al., 2002), and mRNA half-lives of
E. coli (Bernstein et al., 2002, 2004). The data on mRNA half-life in B. subtilis
(Hambraeus et al., 2003) were obtained from Dr. L. Hederstedt.

The transcription factors of human and yeast were obtained from
the TRANSFAC transcription factor database (release 7.0; http://www.gene-
regulation.com/pub/databases.html#transfac).
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As the data on mRNA stability, mRNA length, and CDS length are not
normally distributed, parametric analyses are not applicable. We performed non-
parametric Spearman correlation analysis to examine the relationship between
mRNA stability and mRNA length (or CDS length). After logarithmic trans-
formation using 10 as the base, the distributions of the data became normal or
nearly normal. Parametric Pearson correlation analysis of the normalized data got
the same results (data not shown) as the Spearman analysis, except in one case,
E. coli strain BZ453. The correlation between mRNA half-life and stability in
E. coli strain BZ453 is insignificant in the Pearson analysis (P > 0.10) but
is marginally significant with a weak correlation coefficient in the Spearman
analysis.

RESULTS AND DISCUSSION

In E. coli, a previous study did not find a statistically significant correlation between
ORF (open reading frame) length and mRNA half-life of strain NCM3416 in M9
medium (Bernstein et al., 2002). But we found that there is in fact a very weak
but significant negative correlation (Spearman’s correlation coefficient, − 0.041;
P = 0.012). Furthermore, we observed strong negative correlations between CDS
length and mRNA half-life in the same strain grown in LB medium and in several
other E. coli strains (Table I). In B. subtilis, however, similar to a previous report
(Hambraeus et al., 2003), no significant correlation was found between CDS length
and mRNA half-life (P = 0.690).

Our result in E. coli is consistent with the current model of E. coli mRNA
decay, which is initiated by endonucleolytic enzyme cleavage (Jain, 2002). Simple
mechanical damage that affects the stability of long mRNA cannot be excluded.
There are two possible explanations for the lack of correlation between CDS length
and mRNA half-life in B. subtilis. The first is that the early stationary phase when
the mRNA half-life data were collected (Hambraeus et al., 2003) does not represent
the normal growth conditions in natural environments. From the results with
E. coli, we can see that growth conditions influence global mRNA stability, as is
also illustrated in stressed cells (Knapinska et al., 2005). The second possibility is
that the mRNA-decay pathway of B. subtilis is different from that of E. coli. E. coli
was traditionally assumed to be a typical prokaryote, but now genome biologists
realize that prokaryotes display a considerable diversity in genome organization
(Brown, 2002).

In yeast strain Y262, we did not find significant correlation between CDS
length and mRNA half-life (Table I), which is the same as previously reported
(Wang et al., 2002). Strangely, there is a weak but significant positive corre-
lation between CDS length and mRNA half-life of yeast strain rpb1-1 (Spear-
man’s correlation coefficient, 0.091; P < 10−5). In human HepG2 cells and
Bud8 cells, mRNA length is positively correlated with mRNA-decay rate and in
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Table I. Correlation Between mRNA (or CDS) Length and Stability

Species Cell types or strains Stability indicator mRNA lengtha CDS lengtha

Homo sapiens HepG2 cells Decay rate 0.267∗∗∗ 0.244∗∗∗
Bud8 cells Decay rate 0.246∗∗∗ 0.215∗∗∗
T lymphocytes

(medium)
Half-life −0.036∗∗ NS

T lymphocytes (αCD3) Half-life −0.100∗∗∗ −0.056∗∗
T lymphocytes

(αCD3 +αCD28)
Half-life −0.105∗∗∗ −0.062∗∗

Saccharomyces
cerevisiae

Strain Y262 Half-life NS

Strain rpb1-1 Half-life 0.091∗∗∗
Escherichia coli Strain NCM3416 (LB

medium)
Half-life −0.258∗∗∗

Strain NCM3416 (M9
medium)

Half-life −0.041∗∗

Strain BZ453 Half-life −0.035∗
Strain DF261 Half-life −0.136∗∗∗
Strain K10 Half-life −0.184∗∗∗
Strain N3433 Half-life −0.135∗∗∗
Strain SH3208 Half-life −0.169∗∗∗
Strain SU02 Half-life −0.110∗∗∗
Strain YHC012 Half-life −0.087∗∗

Bacillus subtilis Strain BR95 Half-life NS

aSpearman’s correlation coefficient; NS, not significant; ∗marginally significant, 0.1 > P > 0.05;
∗∗P < 0.05; ∗∗∗P < 10−5.

human T lymphocytes mRNA length is negatively correlated with mRNA half-life
(Table I). As a stable mRNA can be measured by lower decay rate or longer
half-life, our analyses of different sources of data consistently showed that short
mRNAs are more stable than long mRNAs in human cells. This is unexpected
from the eukaryotic mRNA-decay pathways discovered up to now (Meyer et al.,
2004; Parker and Song, 2004; Yamashita et al., 2005).

For the discrepancy observed between human and yeast, we have four hy-
potheses. The first is that the experimental growth conditions of yeast may not
be representative of normal growth conditions in natural environments, and so
the mRNA stability data of yeast are not representative. Heat shock, hypoxia, and
other stresses were reported to cause stabilization of some mRNA (Knapinska
et al., 2005; Kang et al., 2006). We are also not sure whether the human cells
studied, like lymphocytes, are representative.

Comparison of the genomes of unicellular eukaryotes and multicellular eu-
karyotes has shown that the evolution of multicellularity was accompanied by
construction of numerous multidomain extracellular matrix proteins and signaling
proteins (Patthy, 1999, 2003). Transcripts encoding important regulatory proteins,
such as transcription factors, cell cycle regulators, and regulators of apoptosis, turn
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Table II. Comparison of Coding Sequence Length Between Human and Yeast

Homo sapiens
Saccharomyces
cerevisiae Pa

All the analyzed genes n 4506 5364
CDS lengthsb

(base)
1870 ± 26 1529 ± 15 < 10−10

Transcription factors n 214 281
CDS lengthsb

(base)
1831 ± 111 1772 ± 60 0.238

aMann–Whitney test.
bMean ± standard error of mean.

over rapidly (Dodson and Shapiro, 2002; Raghavan et al., 2002; Wang et al., 2002;
Yang et al., 2003). The second hypothesis is that important regulatory proteins
in human may contain more domains in order to perform precise regulation of
physiological function than those in yeast; consequently, they tend to be longer
than the other proteins in general. Transcripts encoding transcription factors were
shown to have short half-lives (Dodson and Shapiro, 2002). But we did not find
significant differences between the CDS lengths of transcription factors in human
and yeast (Table II).

The third hypothesis is that humans may have an undiscovered mRNA-decay
pathway similar to that of E. coli (Jain, 2002), but yeast does not. More and
more endonucleolytic cleavages of mRNA in vertebrate cells are being identi-
fied (Dodson and Shapiro, 2002). For example, Irel, an endoplasmic reticulum-
transmembrane protein containing both protein kinase and endoribonuclease do-
mains, probably has a wide range of target sites on mRNA of mammals (Dodson
and Shapiro, 2002). A recent study shows that stalling of ribosome by a stem–loop
structure triggers endonucleolytic cleavage of mRNA (Doma and Parker, 2006;
Tollervey, 2006). Apparently, long mRNAs are more likely to form stem–loop
structures than short mRNAs, either by regulation or by chance. The authors
suggest other sources of stalled translation that may trigger such a mRNA-decay
pathway: damaged mRNAs or ribosomes. Long mRNAs having more nucleotides
and more ribosomes attached are thus expected to be more likely to be attacked
by such “no-go” decay than short mRNAs. Unfortunately, we have not observed
strong negative correlation between mRNA stability and length in budding yeast,
in which the “no-go” decay was observed.

The last hypothesis is that human mRNAs are much longer and thus may
be more mechanically fragile than yeast mRNA. So we compared the lengths of
human and yeast CDSs analyzed in this study. Human CDSs are significantly
longer than yeast CDSs (Table II), but still, we are not sure whether the longer
CDSs in human are enough to account for the observed difference between human
and yeast.
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In summary, our study suggests the possibility that endonucleolytic attacks
by RNA endonuclease and/or mechanical damage may strongly influence mRNA
stability in both prokaryotes and eukaryotes. Once more data on mRNA stability
are available, further analysis will be required to reach a conclusion.
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